
Object-Oriented Programming

 5 - 1

OBJECT-ORIENTED
PROGRAMMING

LANGUAGES
-- C++ --

C++ Classes const Inheritance

Using C++ Automatic typedef inline Derived Classes

Types Function Overload Reference types Composition

Scope Resolution Type-safe link new, delete Binding

Protection Constructors Containers Virtual Functions

friend Functions Destructors Header Files Operator Overloading

Objectives of Module 5

● Present and discuss the syntax of the C++ Programming Language

● Present and discuss the features of C++ which support object-oriented programming

Suggested Reading

Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual,

Addison-Wesley Publishing Company, 1990, ISBN 0-201-51459-1

Stanley B. Lippman, C++ Primer, AT&T Bell Labs, Addison-Wesley Publishing Company,

1989, ISBN 0-201-16487-6

Lee and Mark Atkinson, Using Borland C++, Que Corporation, 1991, ISBN 0-88022-675-

7

Object-Oriented Programming

 5 - 2

THE C++ LANGUAGE

✓✓ Developed by Bjarne Stroustrup starting in the early 1980's

✓✓ Based on merging features of C and Simula-67 (developed

in Scandinavia in 1967)

✓✓ Originally called C with Classes since it involved adding

Simula-67's class concept to C

✓✓ C with Classes was later expanded by simply adding

improvements to C (not to implement object orientation

necessarily), so the concept of the next step after C, or C++

(the C increment operator is ++), evolved

The C++ is suffering from a lack of standardization today, with many distinct

dialects emerging.

This set of course notes reflects the de facto standard associated with the

Borland C++ language, version 3.0. Borland C++ is quite close to AT&T

C++ (cfront).

Object-Oriented Programming

 5 - 3

OBJECT ORIENTATION
✓✓ Simula-67 supports the creation of simulations, and simulations of

systems usually involve many discrete, independently operating

entities

✓✓ The authors of Simula-67 called these entities objects

✓✓ Rather than perform actions on objects in a simulation, Simula-67

evolved the concept of sending messages to objects, and that's

what object-oriented programming (OOP) entails

✓✓ OOP later proved to be an easy way to think about many other

types of problems, so a number of other object-oriented

programming languages (OOPLs) were developed, most notably

Smalltalk

✓✓ These OOPLs provided many benefits, but the steep learning curve

and significant period of limited productivity were drawbacks

Object-Oriented Programming

 5 - 4

AN OBJECT-ORIENTED C
C++

✓✓ Developed to take advantage of the ease of programming

provided by an OOPL

✓✓ Developed to provide an easy learning path for C programmers

✓✓ Developed to fix defects in C which allow certain kinds of bugs to

slip through the compiler -- bugs which may go unnoticed until

runtime

C++ allows the programmer to focus

on concepts rather than forcing

him to concentrate on the code

which implements those concepts

Object-Oriented Programming

 5 - 5

THE ANSI C++ STANDARD

✓✓ ANSI committee X3J16 was created to produce an

international standard for C++, which is still in development

✓✓ Most of today's C++ compilers deviate from the standard in

one way or another, so portability of code between different

C++ compilers on different platforms tends to suffer today

✓✓ GNU C++ is becoming a standard in its own right due to the

fact that it is free and it runs on many platforms, including

386 PCs and workstations, but GNU C++ does not conform

to the C++ standard exactly

Note that the ANSI C++ standard does not yet exist.

In the interim, Stroustrup's book is the ANSI Base Document:

Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference
Manual, Addison-Wesley Publishing Company, 1990, ISBN 0-201-

51459-1

Object-Oriented Programming

 5 - 6

THREE WAYS OF USING C++

✓✓ Like C or C with extensions -- many C programs

may be compiled with a C++ compiler with little or

no modifications (mainly in the area of function

prototypes)

✓✓ Like C with enhanced data abstration capabilities --

more sophisticated data structures may be

manipulated with greater ease in C++

✓✓ Like an OOPL -- all the benefits of contemporary

object-oriented programming may be achieved

through C++

Object-Oriented Programming

 5 - 7

TYPES = STRUCTS + FUNCTIONS
A type is a C struct with functions

struct complex { /* The C struct */

 float real_part;

 float imag_part;

};

struct complex { // The C++ struct

 float real_part;

 float imag_part;

 complex(); // a constructor (discussed later)

 void add (complex, complex); // operates on object

};

This brings up the concepts of member data and member functions. Member data is

duplicated with each object created under C++. Member functions are often

implemented as inline functions, so their code is often duplicated when called.

Object-Oriented Programming

 5 - 8

typedef FOR C++ STRUCTS
IS AUTOMATIC

struct complex a, b; /* C form is supported */

complex x, y; // "struct" is not required

x.real_part = 2.2;

x.imag_part = 3.3;

y.real_part = 4.2;

y.imag_part = 4.3;

y.add(x, y); // y = x + y

Object-Oriented Programming

 5 - 9

SCOPE RESOLUTION OPERATOR
::

✓✓ Member functions associated with a struct are declared as function

prototypes in the struct

✓✓ When member functions are defined, their associated struct is specified

using the scope resolution operator (::)

void struct_name::member_function_name() { /* body */ };

as in

void complex::add (complex left, complex right)

{ /* body */ };

Object-Oriented Programming

 5 - 10

SCOPE RESOLUTION OPERATOR,
Continued

✓✓ The scope resolution operator may be used whenever the

compiler would not normally choose the desired name

int x;

void main() {

 int x;

 x = 2; // local X is assigned

 ::x = 4; // global X is assigned

};

Object-Oriented Programming

 5 - 11

MEMBER FUNCTION SCOPE

✓✓ A member function may access any other member in the same

struct, including both data and other member functions

void complex::add(complex left, complex right) {

 real_part = left.real_part + right.real_part;

 // note that the real_part left of the

 // equal size refers to the real_part

 // of the target object

 imag_part = left.imag_part + right.imag_part;

};

An example of a C++ class declaration and definition:

#include <stdio.h>

struct elevator {

 int floor_selected;

 int floor_number;

 void initialize(void);

 void select_floor (int floor);

 void go(void);

};

void elevator::initialize(void) {

 floor_selected = 0; floor_number = 0;

}

void elevator::select_floor (int floor) {

 floor_selected = floor;

}

void elevator::go (void) {

 if (floor_number < floor_selected)

 while (++floor_number < floor_selected)

 printf("floor: %d going up\n", floor_number);

 else

 while (--floor_number > floor_selected)

 printf("floor: %d going down\n", floor_number);

 printf("floor %d: stopping\n", floor_number);

}

Object-Oriented Programming

 5 - 12

DATA PROTECTION

Access to data and functions within a struct is controlled by the

three access specifiers :

✓✓ private -- prevents access except by other members

✓✓ protected -- like private, except inherited classes also

have access (inheritance is discussed later)

✓✓ public -- permits everyone, including end users, to

access the members

Access to private and protected members can be granted to non-

member functions by using the friend keyword when declaring

the non-member function inside a struct

Object-Oriented Programming

 5 - 13

public AND private WITH friend
#define SIZE 10

struct int_array {

 private:

 int a[SIZE];

 public:

 void init(); // a member function

 friend void print (int_array); // a friend function

};

void print (int_array x) { // not a member function

 for (int i=0; i<SIZE; i++) cout << x.a[i] << " ";

 cout << "\n";

}

Object-Oriented Programming

 5 - 14

CLASSES

class

is the preferred keyword for defining new types in C++

✓✓ struct defaults to public for the access of its members

✓✓ class defaults to private for the access of its members

class typename { struct typename {

 // private members // public members

public: private:

 // public members // private members

}; };

Object-Oriented Programming

 5 - 15

AUTOMATIC typedef DECLARATIONS

The tag names of these entities are designated as reserved words

within their scope automatically (similar to doing a typedef in

C), and the form of their declarations and definitions are

similar:

✓✓ class

✓✓ struct

✓✓ union

✓✓ enum

Object-Oriented Programming

 5 - 16

FUNCTION OVERLOADING
✓✓ Function Overloading allows more than one function to be

given the same name as long as all these functions have

distinct argument lists

✓✓ Function Overloading prevents name clashes when multiple

libraries come into use

✓✓ Function overloading works through name mangling, where

the compiler-generated name for the function includes

information on the types of its arguments

✓✓ Examples of overloaded functions:

void print(int);

void print(int, char);

void print(double);

Object-Oriented Programming

 5 - 17

DEFAULT FUNCTION ARGUMENTS

✓✓ Default arguments are used in a function's argument list when

common values are to be automatically generated by the compiler

rather than always forcing the programmer to specify them

✓✓ Default arguments may be given only once, in the function

declaration

✓✓ Only trailing arguments may be given default values, and once

default values are assigned, they must be assigned to the rest of

the remaining arguments as well

Example of function overloading:

#include <iostream.h>

struct ints {

 int a;

 int b;

};

void print(int value, int times = 1);

void print(char *value, int times = 1);

void print(struct ints *value, int times = 1);

void print (int i, int times) {

 for (int j = 0; j < times; j++) cout << "Integer: " << i << "\n";

}

void print (char *s, int times) {

 for (int j = 0; j < times; j++) cout << "String: " << s << "\n";

}

void print (struct ints * is, int times) {

 for (int j = 0; j < times; j++)

 cout << "Ints: " << is->a << ", " << is->b << "\n";

}

Object-Oriented Programming

 5 - 18

TYPE-SAFE LINKAGE

C++ was designed in part to
eliminate problems found in C

✓✓ C++ requires full function prototyping -- C does not

✓✓ C++ performs strong type checking (type-safe linkage), so if the

arguments to a function when it is called are not the same types as

when it was declared, the compiler will flag this error at compile

time -- C does not

✓✓ C++ does not always hold you to type-safe linkage because there

are times when you may want to link in code generated by a C

compiler; C++ lets you do this through an alternate linkage

specification, which looks like this:

extern "C" {type function_name(arg_types); }

Object-Oriented Programming

 5 - 19

CONSTRUCTORS

✓✓ A constructor is used to initialize a variable based on a class

when the variable is created

✓✓ A constructor is a member function of the class that has the

same name as the class

✓✓ Constructor calls occur automatically at the point the

variable is created, and the programmer cannot access the

variable before the constructor is called

✓✓ Constructor functions may be overloaded like other member

functions so that various kinds of initialization may be done

✓✓ Default arguments may also be used with constructor

functions so long as ambiguities are not created

✓✓ Constructor functions are not required by C++, but they are

often very convenient

Object-Oriented Programming

 5 - 20

DESTRUCTORS

✓✓ Destructor functions are used to ensure proper cleanup when a

variable is destroyed

✓✓ A destructor function is a member function with the same name

as the class preceded by a tilde

✓✓ Calls to destructor functions are automatic, occurring when a

variable goes out of scope

✓✓ Destructor functions may not have any arguments

✓✓ Destructor functions are optional, like constructor functions

✓✓ Unlike constructor functions, only one destructor function may

be declared

Object-Oriented Programming

 5 - 21

const
AVOIDING THE PREPROCESSOR

✓✓ const replaces part of the function of the #define preprocessor

directive

✓✓ const performs value substitution, adding type checking and

normal expression evaluation

✓✓ const is placed in front of any variable definition, indicating that --

1. the value cannot be changed

2. the compiler should try not to allocate storage, keeping the

information in the symbol table instead

const float pi = 3.14159;

Object-Oriented Programming

 5 - 22

const IN ANSI C AND C++
✓✓ const behaves differently in ANSI C and C++

✓✓ Linkage --

◆◆ In C, const defaults to external linkage (global)

◆◆ In C++, const defaults to internal linkage (local)

✓✓ Memory allocation --

◆◆ In C, const always allocates storage for the value

◆◆ In C++, const tries to store values in the symbol table

✓✓ Constant expressions (like array definitions) --

◆◆ In C, const variables cannot be used in constant expressions

(e.g., cannot be used in header files)

◆◆ In C++, const variables can be used in constant expressions if

symbol table storage is possible (i.e., elaborate structures are

not involved)

Object-Oriented Programming

 5 - 23

inline FUNCTIONS

✓✓ In C++, the user can create inline functions, where, when they are

called, their code itself is placed at the point of the call rather than

a subroutine call instruction

✓✓ inline functions were created to replace the macro functions

required in C to perform such code optimization

✓✓ Functions defined within a class declaration are automatically

inline

✓✓ Global functions must use the inline keyword to become inline

✓✓ Full C++ type checking is performed on inline functions, like any

other functions

✓✓ The prototype and function body of an inline function are stored

in the symbol table

Object-Oriented Programming

 5 - 24

DEFINING OBJECTS
✓✓ In C++, objects (variables) may be defined anywhere

Some variables cannot be initialized until code has been

executed, so C++ allows a variable to be defined at

any point in a scope; the life of such a variable

extends from that point to the end of the scope

✓✓ In C++, aggregate initialization is supported extensively

✓✓ Storage is reserved at the beginning of a scope

Local storage usually comes off the stack, so C++ scans

forward when a scope is entered

✓✓ Initialization of an object takes place at the point of definition,

even though the space has already been allocated

✓✓ An object is not available until the point of definition

If the scope is left before the constructor is called, the

destructor is not called

Goto's which skip variable initialization are not allowed

Object-Oriented Programming

 5 - 25

REFERENCES
✓✓ As we have already seen, C++ supports pointers like C

✓✓ C++ also supports the reference (or reference type), which is like

a pointer except that the compiler automatically takes the address

and dereferences it for you (allowing dot notation instead of arrow

notation)

int& fct(float&);

...

int *ip;

float *fp;

ip = fct(*fp);

Object-Oriented Programming

 5 - 26

REFERENCES, Continued

✓✓ References are almost exclusively used as function

arguments and return values

✓✓ Inside a member function, the address of the current object is

accessed with the keyword

this

✓✓ Example of this :

class xint {

 int a, b;

 void init();

public:

 xint() { this->init(); }

};

Object-Oriented Programming

 5 - 27

REFERENCES, Continued

✓✓ References can be independent, acting like a normal variable

except that they modify storage used by other variables

int i = 100;

int &ip = i;

ip++; // changes the value of i to 101

Object-Oriented Programming

 5 - 28

STATIC CLASS MEMBERS IN C++
✓✓ Class members (data or functions) that work with the class as a whole

rather than individual objects are declared with the keyword static

✓✓ Static members may be accessed by all members of a class, but the name

of the static member is hidden within the scope of the class, so nothing

outside the class may access it

✓✓ Static data members only have one instance for all objects of a class

✓✓ Defining and initializing static data is performed by a global definition that

reserves storage and initializes the data

✓✓ Static member functions also work with the entire class

✓✓ The address of an object, referred to with the keyword this, is not passed

into a static member function, so static member functions can only access

static data members or call other static member functions

✓✓ Static member functions may only be called with an object or by

specifying the class and the scope resolution operator

Example of static class members:

#include <iostream.h>

class objcounter {

 char *object_name;

 int number;

 static int counter; // one copy for all instances

public:

 objcounter (char *name); // constructor

 void whoami(void);

 static int number_of_objects(void);

};

int objcounter::counter = 0;

objcounter::objcounter(char *name) {

 object_name = name;

 counter++; // increment static data

 number = counter;

}

void objcounter::whoami(void) {

 cout << "Name: " << object_name << ", Number: " << number << "\n";

}

int objcounter::number_of_objects(void) {

 return counter;

}

Object-Oriented Programming

 5 - 29

DYNAMIC OBJECT CREATION

✓✓ Dynamic object creation is built into the C++ language, through

the keywords new and delete rather than being implemented

only in library function calls such as malloc() and free()

✓✓ Dynamic object creation lets the type and lifetime of an object

be chosen at run time

Object-Oriented Programming

 5 - 30

malloc() AND new

✓✓ malloc() allocates space for an object given its size

✓✓ new allocates space for an object given its type

✓✓ malloc() does not initialize the space

✓✓ new calls the associated constructor function to initialize

the object

int *ip;

ip = (int *)malloc(sizeof(int));

 /* done in C */

ip = new int;

 // done in C++

Object-Oriented Programming

 5 - 31

free() AND delete

✓✓ free() deallocates space provided by malloc()

✓✓ delete deallocates space provided by new

✓✓ free() does no cleanup other than freeing the space

✓✓ delete calls a destructor for the object

With the advent of new and

delete in C++, there is no

reasonable need for

malloc() and free() except

for compatibility with C

Object-Oriented Programming

 5 - 32

CONTAINER CLASSES

✓✓ Container classes, also called collections, are classes which

hold objects created at run time

✓✓ Container classes often hold groups of objects from other

classess, making them a form of composite class

Object-Oriented Programming

 5 - 33

HEADER FILES
✓✓ In C++, a header file contains declarations only, not definitions

✓✓ A header file includes:

◆◆ class declarations

◆◆ function declarations

◆◆ const values

◆◆ anything else that is a part of the public interface to a class

or library

✓✓ A header file must be insulated so the compiler sees its contents

only once when compiling a file; preprocessor statements, like

those used before for STORABLE.H, should be used to perform this

insulation

✓✓ In essence, these preprocessor statements direct the header file to

be skipped if it has already been included

Object-Oriented Programming

 5 - 34

INHERITANCE
✓✓ Inheritance:

◆◆ allows new classes to be built from existing classes

◆◆ supports code reuse without the need to rewrite

◆◆ does not entail modification to the code on which the

new classes are based

◆◆ requires access to only the header files of the classes

on which the new classes are based

✓✓ When a new class inherits from a base class:

◆◆ all of the public members of the base class can be

public in the new class

◆◆ none of the public members of the base class can be

public in the new class

◆◆ any combination of the above

◆◆ members of the same name as in the base may now

have different meanings

Object-Oriented Programming

 5 - 35

INHERITANCE SYNTAX

class derived : [public] base { /* details */ };

name of base class

if public, public members in
base class are automatically

public members in the
derived class

name of new, derived class

single colon

Object-Oriented Programming

 5 - 36

INHERITANCE

✓✓ Inheritance requires a lot of design-oriented thought in order to

be applied correctly

✓✓ Use inheritance only when it makes sense -- is the derived class

really an offspring of the base class, and does it make sense that

the derived class should inherit capabilities from the base class?

✓✓ Breaking a problem into classes has the effect of partitioning

the problem

Object-Oriented Programming

 5 - 37

BASE CLASS CONSTRUCTORS
AND DESTRUCTORS

✓✓ Base class constructors are called in the constructor initializer

list, which was shown in MULTINH.CPP:

derived::derived() : base1(), base2() { }

base class constructors

derived class constructor

Object-Oriented Programming

 5 - 38

DERIVED CLASSES

✓✓ The way C++ calls base class constructors ensures that all

derived class constructors can depend on the base class

being properly initialized

✓✓ Up to one destructor may be defined for each class

✓✓ Destructors are called automatically, and all destructors are

called for an object, which includes the destructors for its

base classes, their base classes, and so on

✓✓ There is no destructor equivalent for the constructor

initializer list

✓✓ Destructors are called from the top down (the opposite to

the order of constructor calls)

Object-Oriented Programming

 5 - 39

CREATING CLASSES
WITH COMPOSITION

✓✓ Inheritance is not the only way to create new classes from existing

classes in C++; inheritance is sometimes said to represent an is-a

relationship

✓✓ Composition is a method of building classes that contain objects

of other classes; composition is sometimes said to represent a has-

a relationship

A car is a type of vehicle inheritance

A car has an engine and four wheels composition

Object-Oriented Programming

 5 - 40

CREATING CLASSES
WITH COMPOSITION

✓✓ Composition involves creating instances of a class inside

another class

✓✓ If the objects have constructors which require arguments, those

objects must be explicitly initialized in the constructor initializer

list

✓✓ The order of calls in a constructor initializer list is not necessarily

the order in which they appear; instead, the base class

constructor is called first, and so on, and the member object

constructors are called in the order in which the objects are

declared in the class

✓✓ The constructor initializer list only determines the arguments

given to the constructors, not the order of constructor calls

Object-Oriented Programming

 5 - 41

const AND enum INSIDE CLASSES

✓✓ A const inside a class behaves differently from a const outside a class

✓✓ A const in C++ must always be initialized when it is created

✓✓ A C++ class declaration is not a definition (it does not reserve storage),

so a const in a class must be given an initial value when the

constructor is called

class X {

 const i; // const i = 1; not allowed

public:

 X (int I) : i(I) {}

};

i is initialized to I

Object-Oriented Programming

 5 - 42

const AND enum, Continued
✓✓ Because const allocates storage, it can not be used in a

constant expression, so the following is invalid:

class int_array {

 const sz;

 int array[sz]; // not a constant expression

 // ...

};

✓✓ A solution to this problem is to employ an untagged
enumeration value as a const:

class int_array {

 enum { sz = 100 };

 int array[sz];

 // ...

};

Object-Oriented Programming

 5 - 43

EARLY AND LATE BINDING

✓✓ Binding -- a linkage between a function call and a function

definition

✓✓ Compile-time, static, or early, binding -- those linkages

resolved during the run of the compiler and linker

✓✓ Run-time, dynamic, or late, binding -- linkages are resolved

through a table of addresses of possible routines to call; this

table is provided, and a particular table entry is selected during

execution of the code

✓✓ The virtual function is the particular C++ feature which

supports late binding

Object-Oriented Programming

 5 - 44

VIRTUAL FUNCTIONS

virtual return_type function_name(type arg);

✓✓ The virtual keyword in C++ implements late binding

✓✓ The virtual keyword causes a hidden pointer, called VPTR, to

be created

✓✓ The VPTR is assigned by the constructor to the address of

the VTABLE, which in turn contains the addresses of all

virtual functions

✓✓ A virtual function call consists of code that indexes into the

VTABLE through the VPTR

Object-Oriented Programming

 5 - 45

CREATING EXTENSIBLE PROGRAMS

✓✓ The goal of object-oriented design is to identify the essential

concepts and activities performed by the system (or program) and

to translate them into types

◆◆ Humans organize the world as types

◆◆ C++ allows a programmer to organize a program as types

◆◆ Types in C++ provide models for the real-world types

◆◆ The program becomes an image, or model, of the problem

being solved

✓✓ A program has a single essential purpose or job it is trying to do

Object-Oriented Programming

 5 - 46

EXTENDING AN
OBJECT-ORIENTED DESIGN

✓✓ Base classes generally represent the primary concepts of an

object-oriented program

✓✓ Most base classes are abstract, representing concepts rather than

specific things, so it does not make sense to create objects of an

abstract base class

✓✓ C++ allows an abstract base class to contain pure virtual functions

by assigning the function body to zero:

virtual void f() = 0;

✓✓ No objects can be created of such a class; objects may be created

only from classes derived from this abstract base class

✓✓ These derived classes contain definitions for the pure virtual

functions in the base class

Object-Oriented Programming

 5 - 47

EXTENDING A PROGRAM

1. Derive a new class from the abstract base class

The desired extensions are embodied by redefining the
virtual functions in the abstract base class

2. Add new data structures and functions as necessary, including

new constructor functions which invoke the base constructors as
needed in the constructor definition list

The derived class is now taking on attributes and behaviors

which distinguish it from the abstract base class

3. Add code at the point where new objects are created so the
constructor for the new derived class is called

The new objects are created and properly initialized

Object-Oriented Programming

 5 - 48

OPERATOR OVERLOADING
✓✓ In C++, the meaning of almost any operator may be changed

when that operator is used with variables of particular types

✓✓ The meaning of an operator changes only when an operator is

used with the indicated types

✓✓ This permits the operators to be used as infix functions:

a + b;

✓✓ In the above example, the function "+" is applied to the target

object "a" with the argument "b", just like set() below is

applied to the target object "A" with the argument "B":

A.set(B);

✓✓ The syntax used for declaring the operator function for the "+"

operator is:

return_type operator+ (type arg);

